ОБЪЕДИНЕНИЕ ЛИДЕРОВ НЕФТЕГАЗОВОГО СЕРВИСА И МАШИНОСТРОЕНИЯ РОССИИ
USD 89,82 0,12
EUR 99,72 0,52
Brent 0.00/0.00WTI 0.00/0.00

Свет усилили в 100 раз с помощью взаимодействия фотонов и электронов

Физики разработали фотонный кристалл, который усиливает взаимодействие между фотонами света и электронами.

Исследователи из Массачусетского технологического института разработали резонаторы, которые усиливают взаимодействие между фотонами и электронами на несколько порядков с помощью излучения Смита-Парселла. Технология пригодится для развития электронных микроскопов и создания крошечных ускорителей частиц (коллайдеров) на чипе.

Взаимодействие между фотонами и электронами используется в самых разных технологиях от лазеров до солнечных батарей и светодиодов. Недостаток традиционного подхода состоит в том, что из-за разной длины волны у этих частиц, взаимодействие между фотоном и электроном очень слабое.

Физики придумали, как улучшить это взаимодействие. Они разработали специальный фотонный кристалл, который представляет собой пластину кремния на изоляторе, протравленной массивом отверстий нанометрового размера. Теоретические расчеты показывают, что с помощью направленного пучка электронов такая пластина может генерировать в тысячу раз более сильное излучение Смита-Парселла. Эксперименты подтвердили увеличение света более чем в 100 раз.

Принцип работы устройства предусматривает передачу импульса от электрона группе фотонов или наоборот. В то время как обычные взаимодействия света с электронами основаны на генерации света под одним углом, фотонный кристалл настроен таким образом, что позволяет производить свет под целым диапазоном углов.

Схема экспериментальной установки. Изображение: Yi Yang et al., Nature

В экспериментах ученые продемонстрировали стократное увеличение излучения, используя перепрофилированный электронный микроскоп в качестве источника электронного луча. При этом они отмечают, что потенциально этот метод может обеспечить гораздо большее улучшение при использовании специализированных устройств.

Тот же процесс можно использовать и в обратном направлении: резонансные световые волны могут ускорять движение электронов. Потенциально это можно использовать для создания миниатюрных ускорителей частиц на чипе. Это значит, что некоторые эксперименты, для которых сейчас нужны огромные подземные туннели, как Большой адронный коллайдер, можно будет проводить в обычной лаборатории.


Дополнительная информация

  • Автор: Александр Шереметьев

Идет загрузка следующего нового материала

Это был последний самый новый материал в разделе "Технологии"

Материалов нет

Наверх