Сибирские ученые научились находить и устранять деформации в промышленной керамике
Коллектив ученых из Красноярска и Новосибирска разработал метод для определения остаточных деформаций в керамике из титаната бария. Это позволит сохранить её свойства и контролировать качество изделий, производимых из этого материала. Результаты работы опубликованы в журнале Ceramics International.
Титанат бария – кристаллический материал с высокой диэлектрической проницаемостью, определяющей его электрические изоляционные свойства. Он применяется для создания промышленной керамики, которая используется в электронике и радиотехнике как элемент конденсаторов, генераторных датчиков, позисторов, электроакустических устройств и микрофонов, способных работать с ультразвуком, а также в качестве изолирующих пленок в электронных приборах.
Для производства керамики, кристаллический порошок титаната бария спрессовывают в «таблетки». Однако в таком виде материал имеет существенный «изъян». После сжатия в нем появляются деформации, которые кардинально меняют диэлектрическую проницаемость. Отжиг керамики при определенной температуре в течение некоторого времени позволяет вернуть ее к исходному состоянию, в котором давление в материале «выправляется», а свойства не нарушаются. Вместе с тем, в процессе термической обработки нельзя определить, как долго нужно отжигать материал, а простых и оперативных методов измерения остаточных деформаций до последнего времени не было. Физики из Красноярска и Новосибирска решили эту проблему.
Ученые Института физики им. Л.В. Киренского Красноярского научного центра СО РАН и Института автоматики и электрометрии СО РАН (Новосибирск) разработали и испытали методику, которая позволяет контролировать остаточную деформацию микрокристаллов титаната бария в керамике. Деформированные участки в спрессованном материале можно обнаружить с помощью спектрального картирования. Метод позволяет следить за качеством производимой керамики.
Чтобы увидеть изменения в структуре материала ученые использовали спектроскопию комбинационного рассеивания света. В основе этого метода – изменение частоты падающего оптического излучения при взаимодействии с молекулами вещества. При этом в спектре рассеянного излучения появляются спектральные линии, которых нет в первичном свете. Для начала исследователи оценили, как свет рассеивается на кристаллическом порошке титаната бария. Это позволило им построить калибровочную кривую – зависимость положения спектральной линии от приложенного давления. В дальнейшем, сравнивая исходный снимок со спектрами комбинационного рассеивания прессованных образцов, они видели различия, которые позволяли определить степень деформации в образцах. С помощью таких спектров можно оценить, вернулся ли материал после обжига в исходное состояние или нет. Метод комбинационного рассеивания света позволяет изучать как целые объекты любых размеров, так и локальные изменения структуры на небольших участках образца.
«С помощью нашего метода можно успешно измерять остаточную деформацию. На данный момент это единственный способ, и пока совершенно непонятно можно ли ее измерить как-то иначе. Метод также применим к другим материалам, которые могут быть основой для промышленной керамики и нуждаются в отслеживании остаточного изменения внутренней структуры под давлением. В ходе работы наша команда построила калибровочные кривые. В дальнейшем, для подобных оценок можно использовать нашу универсальную калибровку для материалов из титаната бария. Этот метод, вместо многократного отжигания и проверки образцов, позволяет измерить давление в процессе отжига, и на этой основе регистрировать отклонения», – рассказал Александр Крылов, кандидат физико-математических наук, старший научный сотрудник Института физики им. Л.В. Киренского Красноярского научного центра СО РАН.
Предложенный метод может быть использован для контроля качества производимой керамики и отслеживания неоднородностей ее свойств, спровоцированных деформацией структуры, к примеру, таких как неравномерность акустических полей в электроакустических устройствах и ультраакустических излучателях.
Работа проводилась при поддержке Российского фонда фундаментальных исследований.
Пресс-служба КНЦ СО РАН
Иллюстрация (кликабельно): Верхняя панель (слева направо): электронные микрофотографии необработанного, спрессованного, спрессованного и термически обработанного титана бария. Нижняя панель: спектры комбинационного рассеивания света для этих материалов. Источник:https://doi.org/10.1016/j.ceramint.2019.03.179
Дополнительная информация
- Источник: Научная Россия
Идет загрузка следующего нового материала
Это был последний самый новый материал в разделе "Технологии"
Материалов нет